高中数学教学计划

时间:2025-05-02 19:36:07
高中数学教学计划模板汇总9篇

高中数学教学计划模板汇总9篇

时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,此时此刻需要为接下来的工作做一个详细的计划了。计划怎么写才不会流于形式呢?下面是小编整理的高中数学教学计划9篇,希望能够帮助到大家。

高中数学教学计划 篇1

围绕“生本教育”的教学理念,以更新观念为前提,以育人为归宿,以提高课堂教学效率为重点。特制定了高中数学教师教学计划

高中数学教师教学计划

1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

5、加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照“个人研究、同伴交流、达成共识、主备撰写、实践改进、反思提高”的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

1、把握教材关:

认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。

2、规范日常工作:

严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

3、教师角色的变化:

全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。

高中英语教师教学计划

一、教学目标

高二年级是高中的重要阶段,又是高中三年的承上启下阶段。因此,让学生在高二年级打好学科基础并有所发展是极其重要的。下列目标应在本学期内达到:巩固、扩大基础知识;培养口头和书面初步运用英语进行交际的能力,侧重培养阅读能力;发展智力,培养自学能力。争取在原有基础上有所提高。

二、本学期的教学内容及方法

根据教学步骤完成模块5及模块6的教学内容,根据学生的实际情况对教材练习适当做出调整,删减。让复杂问题简单化,使学生更容易掌握所学知识。利用《英语周报》加大学生的阅读量。提高阅读速度。此外,在本学期的教学中,要狠抓基础及单词、句型及语法等,扎实基础知识,突击写作训练,为高考打下扎实的基础。具体方法钻研并创造性地利用教材,灵活使用,发挥教材特点。

2、内容要求学生一定要过词汇关,反复朗读、默写单词、以便加强学生对基础知识的掌握。摒弃不切实际的教学步骤,抓重点,搞强化,在日常教学中渗透语法意识。利用教材提高学生的基本功,坚持默写单词及重点句型。

3、本学期仍要坚持训练学生的听力并开展任务型写作教学。扎实写作常用句型的同时,要求向句群篇章背诵过渡,培养良好的学习习惯和写作基础。

4、培养学生的阅读能力,并以这些材料为基础,扩充学生词汇量,做到每学完一篇课文,就进行词汇检测。拓宽教材,扩展学生阅读量,努力补充学生的词汇。在平时教学过程中不断扩大学生的词汇量,词汇教学以新带旧,从而达到巩固扩充词汇的目的,做到经常督促、检测。

5、加大基础写作训练的力度,大力鼓励学生学以致用。并要求学生背范文、教师精选的课文段落、写作必背句型,使学生熟悉英语的句式结构及习惯用法,从句到篇,从而写出完整的英语文章。另外每周进行一篇的写作训练,鼓励运用背过的句型,提高学生的写作能力。

6、综合检查。准备每一单元做一次练习,主要以结合当前教学内容为主要测试内容,间或分块测试,习题的训练在于精而不在于多。在教学中尽量按照高考的知识体系有针对性地选择典型性题目。针对共性问题进行精讲,让学生在书本中找到解决问题的源泉,学会思考、整理和归纳。

三、课时安排

1、必修模块5、选修模块6

教学内容,共十个单元。每单元7-8课时每一单元一测验。

2、教材重组

课时1:newwords、warmingup、pre-reading

课时2: reading和comprehending

课时3: languagepoints

课时4: usinglanguage(listening,reading)

课时5: readingtask

课时6: translationandexercises

课时7: talkingandspeaking

课时8: writing

高中数学教学计划 篇2

指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》, ……此处隐藏8066个字……法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

第18周

两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

第19周

简单的三角恒等变换

期末复习

高中数学教学计划 篇9

教材分析

集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.

教学目标

1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.

2. 初步了解“属于”关系的意义,理解集合中元素的性质.

3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.

任务分析

这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.

教学设计

一、问题情境

1. 在初中,我们学过哪些集合?

2. 在初中,我们用集合描述过什么?

学生讨论得出:

在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.

在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.

3. “集合”一词与我们日常生活中的哪些词语的意义相近?

学生讨论得出:

“全体”、“一类”、“一群”、“所有”、“整体”,……

4. 请写出“小于10”的所有自然数.

0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.

5. 什么是集合?

二、建立模型

1. 集合的概念(先具体举例,然后进行描述性定义)

(1)某种指定的对象集在一起就成为一个集合,简称集.

(2)集合中的每个对象叫作这个集合的元素.

(3)集合中的元素与集合的关系:

a是集合A中的元素,称a属于集合A,记作a∈A;

a不是集合A中的元素,称a不属于集合A,记作aA.

例:设B={1,2,3},则1∈B,4

2. 集合中的元素具备的性质 B.

(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.

(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.

例:若集合A={a,b},则a与b是不同的两个元素.

(3)无序性:集合中的元素无顺序.

例:集合{1,2}与集合{2,1}表示同一集合.

3. 常用的数集及其记法

全体非负整数的集合简称非负整数集(或自然数集),记作N.

非负整数集内排除0的集合简称正整数集,记作N*或N+;

全体整数的集合简称整数集,记作Z;

全体有理数的集合简称有理数集,记作Q;

全体实数的集合简称实数集,记作R.

4. 集合的表示方法

[问 题]

如何表示方程x2-3x+2=0的所有解?

(1)列举法

列举法是把集合中的元素一一列举出来的方法.

例:x2-3x+2=0的解集可表示为{1,2}.

(2)描述法

描述法是用确定的条件表示某些对象是否属于这个集合的方法.

例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.

②不等式x-3>2的解集可表示为{x|x-3>2}.

③Venn图法

例:x2-3x+2=0的解集可以表示为(1,2).

5. 集合的分类

(1)有限集:含有有限个元素的集合.例如,A={1,2}.

(2)无限集:含有无限个元素的集合.例如,N.

(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.

注:对于无限集,不宜采用列举法.

三、解释应用

[例 题]

1. 用适当的方法表示下列集合.

(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.

(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.

(3)在平面a内,线段AB的垂直平分线.

(4)不等式2x-8<2的解集.

2. 用不同的方法表示下列集合.

(1){2,4,6,8}.

(2){x|x2+x-1=0}.

(3){x∈N|3

3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.

(A={0,3,5})

4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.

[练 习]

1. 用适当的方法表示下列集合.

(1)构成英语单词mathematics(数字)的全体字母.

(2)在自然集内,小于1000的奇数构成的集合.

(3)矩形构成的集合.

2. 用描述法表示下列集合.

(1){3,9,27,81,…}.

(2)

四、拓展延伸

把下列集合“翻译”成数学文字语言来叙述.

(1){(x,y)|y=x2+1,x∈R}.

(2){y|y=x2+1,x∈R}.

(3){(x,y)|y=x2+1,x∈R}.

(4){x|y=x2+1,y∈N*}.

《高中数学教学计划模板汇总9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式